Variable Acoustics using Multiple Time Variant Reverberation: recent experiences in Halls, Churches and Opera Houses.

David Griesinger
Lexicon Inc.
3 Oak Park, Bedford, MA 01730
www.lexicon.com/links
Major Message:

- Many halls - especially opera houses or halls with fewer than 1000 seats - have problems that can only be solved with a combination of absorption and electronic acoustical enhancement.
- For world-class performance you need high clarity and high envelopment at the same time in all seats.
- The best results come from a dual-slope decay above 500Hz, and high reverberant level below 500Hz.
- High reverberant level requires high resistance to feedback.

C. David Griesinger 2001
Contents:

– 1. A few auditory perceptions
 • Loudness, Intelligibility, Localization, Blend, Envelopment
 • Physiology of Envelopment
– 2. Clarity and Envelopment at the same time
 • Examples of dual-slope decays
 • Boston Symphony Hall, Adelaide Festival Center Theater
 • Sydney Concert Hall, Generic Large Opera House
– 3. Enhancement in small concert halls
– 4. Current installations
 • Berlin - Staatsoper
 • Toronto - Hummingbird Center
 • Indianapolis - Circle Theater

C. David Griesinger 2001
Acoustic Perceptions

• Primary Perceptions:
 – Lighting, Color scheme
 – Musical Balance
 • High instruments vs Bass instruments
 • Voices vs Orchestra
 – Loudness
 – Intelligibility (Clarity)

• Subconscious Perceptions
 – Envelopment (Spaciousness)
 • This one REALLY works!
 – Early Hall Sense (Depth, Blend)
 • Subtle, but nice

C. David Griesinger 2001
Intelligibility

1250Hz 1/3 octave filtered speech - Note the phones typically have a rapid rise, with gaps of 150ms or more.

We localize the rising edges, and hear envelopment during the gaps.

C. David Griesinger 2001
Physiology of Intelligibility

• When there is noise or reverberation, speech comprehension is limited by the ability to separate sound events (phones) from each other.
• Ideally we need to distinguish both the start and end of a phone.
• reflected energy in the 50-150ms range is maximally disturbing.
• we want to minimize reflections in this time range!
• Frequencies above 700Hz are of primary importance to speech (and music) intelligibility.
Localization

- Rising edges of acoustic events are preferentially detected and localized.
- Speech phones and notes from soloists often rise in < 10ms.
- Thus speech and soloists are easily localized.
- Legato strings are often broadened.
- ASW - Apparent Source Width - depends strongly on the rise time of the source!
Envelopment - the Holy Grail of acoustics

– Envelopment draws the listener into the music or scene.
 • An essential part of modern cinema sound
– Envelopment takes training to reliably perceive.
 • Most music listeners (and critics) perceive only loudness, balance, intelligibility, and localization.
– The effect is unconscious but powerful.
 • In a recent blind test there was a consistent bias for high envelopment.
– Frequencies below 500Hz are the most important.

C. David Griesinger 2001
Physiology of Envelopment

- is primarily derived from the spatial properties of the background sound between notes.
- Thus envelopment depends on the neural process that separates foreground and background.
- Determining the end of a sound event often takes >100ms.
- Reflected energy 150ms or more after the end of a sound event contributes to envelopment.
- Envelopment depends on the absolute level of the reflected sound.
- Frequencies below 500Hz are particularly important.
Perception of envelopment depends on detecting the ends of notes
Clarity and envelopment at the same time

- may require a dual-slope decay above 500Hz
- with a single-slope decay below 500Hz.
Boston Symphony Hall, occupied, stage to front of balcony, 1000Hz

1 octave 1000 Hz

(0.2393 sec, -14.24 dB), Slope = 59.50 dB/sec, T60 = 1.0 sec

(0.6977 sec, -22.17 dB), Slope = -31.78 dB/sec, T60 = 1.9 sec
Boston Symphony Hall, occupied, stage to front of balcony, 250Hz
Adelaide - Festival Center Theater
Adelaide Festival Center Theater, unoccupied, system on, stage to row R, 1000Hz
Adelaide Festival Center Theater, unoccupied, system on, stage to row R, 250Hz
Sydney Symphony Hall
What not to do: Sydney Symphony Hall, unoccupied, front desk to row R, 1000Hz

![Graph showing sound decay and relevant data points and slopes.]

- (0.2361 sec, -4.68 dB), Slope=19.81 dB/sec, T60=3.0 sec
- (0.7199 sec, -18.10 dB), Slope=-25.15 dB/sec, T60=2.4 sec

Mag. Scale: -60.0 to 12.0 dB

Time (sec) [Frames 0 - 152]
What not to do: Sydney Symphony Hall, unoccupied, front desk to row R, 250Hz
What not to do: Well known Opera house, unoccupied, system on/off, front of stage to row N, 1000Hz
What not to do: Well known Opera house, unoccupied, system on, front of stage to row N, 1000Hz
Physiology of Early Spatial Impression -
(Blend or Depth)

- Lateral reflected energy in the 10ms to 50ms range reduces the “closeness” of the sound image
- While this perception is pleasant, it is not musically essential.
- too much energy in this time range can cause image broadening, timbre coloration, etc.
- The ideal is to have the total energy in this time range two to four times less than the direct sound.
Acoustics of Large Spaces

Note the low level of reflections in the 50-150ms range, and the substantial energy in the later reverberant decay.

This hall will combine clarity and envelopment.

C. David Griesinger 2001
Large space with stage house

– Example - Boston Symphony Hall

C. David Griesinger 2001
Small Auditoriums

• Auditoria with fewer than 1000 seats present an insolvable problem to the conventional acoustician.
 – They are either too loud and muddy, (at least for most of the seats),
 – or they are too dry.
 – It is not possible to provide enough late reverberant energy without too much early energy.
Acoustics of Small spaces

Note the high level of early reflections, and the early onset of reverberant decay. The high energy in the 50-150ms time results in poor intelligibility and coloration. The early energy is particularly troublesome when there is a stage house. The stage house is invariantly too reverberant.

C. David Griesinger 2001
Stage is enclosed and highly reflective, with severe flutter echoes, and a long effective RT. Sound is too loud. All upstage instruments are temporally smeared.

But it looks pretty!

C. David Griesinger 2001
The balcony is popular because the sound pressure is more tolerable.

C. David Griesinger 2001
Electronic Enhancement in small spaces

• works best when the high energy in the 50-150ms time range is controlled with adequate absorption.
• Very early reflections – in the 20-50ms range are usually already adequate.
• Electronics is used to supply later reverberation at the proper level.
• The result is clear, uncolored direct sound, supported and augmented by envelopment.
We can add electronic enhancement but...

- Enhancement increases envelopment, but there is too much energy from 50-150ms,
- and the sound is muddy.

C. David Griesinger 2001
Results of added absorption

- absorption reduces the strength of the reflections in the 50-150ms time range

C. David Griesinger 2001
Now add electronic enhancement

– electronic enhancement supplies the missing late reflections and envelopment.

C. David Griesinger 2001
Coloration due to feedback is the dominant problem!

- invariably the microphones are beyond the hall radius.
- adding more microphones does not help unless:
 - there are separate amplification and loudspeakers for each microphone
 - AND the mikes and speakers are separated from each other by the critical distance.

C. David Griesinger 2001
Electronic Acoustic Enhancement

- Electronics allows us to separately manipulate reflected energy in different time ranges
- But ONLY if the microphones are close to the source!
- Acoustic feedback is the dominant feature in enhancement systems.
- The amount of feedback is determined by the ratio of the source-microphone distance to the enhanced critical distance (hall radius)!
- In a single channel system feedback must be below -20dB or there will be audible coloration.
- This means for a 3 meter critical distance the microphones must be within .3m meters of the source!
Coloration

• Acoustic feedback is not frequency linear!
• The transfer function between loudspeaker and microphone is uneven, with peaks and dips.
• Overall peaks and dips can be equalized flat with an analyzer such as JBL Smaart and a parametric equalizer. This MUST be done as a first step.
• Once overall equalization is flat, there remains a fine structure of peaks and dips that is inherent in natural reverberation, and depends on the reverberation time.
• Feedback will occur at the peaks of this fine structure, and will cause coloration at system gains far below an average loop gain of zero dB.
Fine structure of the transfer function

- The height and width of the peaks depend on the combined natural and enhanced reverberation times.
- The peak height and frequency vary chaotically with small changes in temperature, occupancy, etc.
- These peaks lengthen the RT of selected frequencies and are HIGHLY AUDIBLE.
- Coloration is reduced by using multiple microphones, speakers, and amplifiers - but only if the microphones and speakers are separated by the critical distance. (MCR)
- In an MCR system the Loop gain (feedback) is reduced by the sqrt of the # of channels.
- An MCR system with 16 channels requires a microphone distance of 1.2 meters or less. (Much better than .3m, but not very useful!)
Transfer function from the stage of Boston Symphony Hall to row N. Note the ~12dB peak to average ratio.

Feedback around this path will increase the RT at the peak frequencies.

C. David Griesinger 2001
Note the ~2Hz peak width. This width is approximately 4/RT. We can use phase modulation to broaden this peak and lower its amplitude.
Peak to average ratio

- can be reduced through phase modulation
- as much as 6dB of peak reduction can be achieved
Phase modulation and pitch-shift

• Phase modulation is associated with pitch-change.
• Not all methods that produce phase modulation are the same.
• There are methods that produce adequate phase modulation over a wide frequency range, with minimal pitch shift.
• With care a 6dB increase in stability can be achieved.
• This 6dB gives an enormous improvement in coloration!
• In our experience phase modulation is essential for producing low coloration even in a 16 channel system.
Multiple Time Variant Reverberators - MTVR

• allows a small number of microphones and a large number of loudspeakers.
• Up to 18dB of feedback reduction can be achieved with two Lares frames - (each with 8 independent reverberators.)
• source-microphone distance (cardioid) =
 \[2 \times 0.17 \times \sqrt{\text{#reverbs}} / \text{critical distance} \approx 10 \text{meters}! \]
 – The factor of 2 is the 6dB gain from phase modulation
 – The factor .17 is the cardioid directivity factor reduced by the -20dB necessary for low coloration. Assume 16 channels.
• When phase modulation is NOT used: \approx 0.5 \text{meters}!
• With MTVR envelopment can be dramatically increased without artificial coloration. (but you need all the tricks.)

C. David Griesinger 2001
Examples:
Berlin - Deutches Staatstoper
Deutches Staatsoper - Berlin

- 0.9 seconds reverberation time
- small, highly damped stage house
- 4 audience rings
- high intelligibility, intimate seating - excellent dramatic connection between actor and audience.
- low reverberance, poor envelopment. Orchestra sounds small, confined to the pit. Singers get no hall return.
- OK for Mozart, poor for Wagner
- Similar to Zurich, London, Vienna, etc.
Lares system in Berlin

• installed by the house Tonmeister, Albrecht Krieger
• 8 speakers in the ceiling were added
• 2 subwoofers on either side of the dome
• 40 speakers in the ring system
• frequency dependent equalization - 6dB more level below 300Hz.
• 1.7 seconds RT below 500Hz for opera. High envelopment, excellent hall return. Wagner lives!
• 2.0 seconds RT broadband for Ballet.
• System in continuous use for more than two years, with excellent reviews.

C. David Griesinger 2001
Hummingbird Center - Toronto

- large hall with 3200 seats, 1.2 seconds RT
- Lares system has 4 Lares frames, 312 loudspeakers, 4-6 B&K microphones.
- Direct sound is augmented in the front, under the balconies and in the back of the hall.
- Reverberant level and decay time are adjustable above and below the balconies.
- Similar equalization as the Staatsoper for opera.
Indianapolis - Circle Theater

C. David Griesinger 2001
Circle Theater, Indianapolis

- Former Vaudeville house, now the Indianapolis Symphony Hall
- System installed with Paul Scarborough of Jaffe, Holden, Scarborough.
- Lares system (three frames) augments both the late reverberation and early lateral reflections.
- Early reflection augmentation increases “Blend”.
- Later reverberation increases warmth, envelopment.
- Reviews have been very good.

C. David Griesinger 2001
Adelaide Festival Center Theater

- 2200 seats, 1.2 seconds RT. System design by Steve Barbar of Lares Associates.
- 350 sq. meters absorption added to stage house, 250 sq. meters to stalls, carpets removed from the floors.
- after treatment intelligibility was good
- five Lares frames, 244 loudspeakers
Well known European Opera House, system off.

Articulation is very good, but the sound is too dry.

C. David Griesinger 2001
Well known European Opera House, system on

The high articulation has been preserved, with more later reverberation and envelopment.

C. David Griesinger 2001